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1 Overview

The astrometric performance of the Fizeau Astrometric Mapping Explorer (FAME)
is estimated in this note. The basic observation in FAME is of the time of transit of a
star across the CCD array. The angular separation between two stars is obtained by
multiplying the di�erence in transit time by the angular velocity. In the great-circle
reduction, the abscissae of all stars along a great-circle scan are referred to a common
origin. Abscissae of stars separated by large angles (other than the basic angle) are
tied together by adding up the relative angular separations of the intervening stars.
The accumulation of random errors is suppressed by application of the equations of
constraint a�orded by the basic angle. The greater the angular distance between stars
that can be directly related, without recourse to intervening stars, the greater is the
rigidity of the great-circle reduction.

Estimation of the astrometric performance of FAME is accomplished in three
steps. First, the variance of the angular separation between stars observed within
a short time interval is determined. Here, the concept of an e�ective �eld of view

is introduced. Unlike HIPPARCOS, which had an instantaneous �eld of view of
about one degree along the scan, the instantaneous FOV for FAME is essentially
in�nitesimal along the scan. The e�ective �eld of view (EFOV) is the extent along
the scan over which relative abscissae of stars can be directly determined. The EFOV
is limited by the accuracy with which the angular velocity is known. Operationally,
the EFOV is de�ned as the extent along the scan which minimizes the variance of the
angular separation between a star at the edge of the �eld, and the average abscissa
of all the stars in the �eld. This variance is a function of the magnitude of the object
star, and will be referred to as the single-observation error.

Thus, the single-observation error is the error associated with the abscissa of an
object star referred to a local �eld center. The second step in evaluating FAME's
astrometric accuracy is to compute the non-rigidity, V. This is the factor by which
the errors are increased when the abscissae are referred to a common origin, such as
one of the points where the great-circle scan intersects the ecliptic. The factor V is
a function of the average number of stars contained in the EFOV. Finally, the errors
in the position, proper motion, and parallax, as a function of stellar magnitude, are
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determined when all observations over the life of the mission are used.

2 Centroiding

A least-squares �t to the binned, theoretical point-spread function will yield the
amplitude and one-dimensional abscissa in units of time. Centroiding errors due
to Poisson statistics, quantum e�ciency variation, and �nite clock resolution are
parameterized in this section. The centroid error, �cent is a random error a�ecting the
abscissae of both the �eld center and the object star.

2.1 Clock Resolution

Taking the maximum clock resolution to be one over the clock frequency, �, the
astrometric error introduced by the �nite clock resolution is

�clock =

p
12 �

; (1)

where 
 = 200"=s is the nominal angular velocity of the spacecraft. The proposed
10 MHz clock will introduce an error of about 5.77 �as. The e�ects of clock stability

are discussed in the section on scale uctuations.

2.2 Pixelation

Centroiding errors due to inter- and intra-pixel variations in QE are mitigated by the
use of time-delay integration (TDI). Without the use of TDI, QE variations may lead
to errors as small as 0.01 pixels, or 859 �as. Using TDI, this error is divided by the
square root of the number of pixels in a row. Thus, the total pixelation error is

�pix = 13:4 �as: (2)

Centroiding along the axis perpendicular to the scan is necessary for purposes of at-
titude determination. In this direction, the pixels are binned 4:1, so that the e�ective
pixel size is 687.5 mas. The expected pixelation error in this dimension is then

�pix = 0:01(687:5 mas)=2 = 3:44 mas (3)

where the factor of 1/2 comes from the 4:1 on-chip binning.
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2.3 Photon and Read Noise

Lindegren has given an expression for the centroid error, in angular units, introduced
by a Poisson process (Lindegren, 1978):

�p =
�

2�A
p
N
; (4)

where A is the rms aperture, and N is the number of counts above background due
to photons. This equation may be generalized to include counts due to read noise,
R, which have no signal content:

�p =
�

2�A

p
N +R
N

; (5)

where R is the product of the read noise squared, times the number of pixels in the
image. The photon count, N is the product of the collecting area, the bandwidth,
the encircled energy, the spectral photon ux, F�, the integration time, the quantum
e�ciency of the detector, the Strehl ratio, and the transmittance of the optics. Values
for these parameters are summarized in Table 1. The encircled energy fraction is
estimated to be 0.6 for rectangular apertures. The value of R assumes a standard
deviation of �ve read-noise electrons per pixel over four pixels, valid at 0.5 �. The

TABLE 1
PARAMETER VALUES

Collecting Area 0.05 m2

RMS aperture, A 37.86 cm
Bandwidth 400 nm
Encircled Energy 0.6
Integration time 1.76 s
Quantum E�ciency 0.75
Read Noise, R 600
Strehl ratio 0.77
Transmittance 0.82

spectral ux at 0.5� may be obtained from the visual magnitude, VMAG, by

F0:5� = 2:7� 10(7:57�0:4�VMAG)m�2nm�1s�1: (6)

The standard deviation, �cent, including e�ects of photon statistics, read noise, clock
resolution, and pixelation is given in Table 2.
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TABLE 2
CENTROID ERROR

VMAG N (0:5 �) �cent (�as) �� (mas)
6.0 3.99e+06 26.16 3.4
7.0 1.59e+06 37.36 3.4
8.0 6.33e+05 56.44 3.5
9.0 2.52e+05 87.69 3.5
10.0 1.00e+05 138.05 3.6
11.0 3.99e+04 219.04 3.7
12.0 1.59e+04 350.53 4.1
13.0 6.33e+03 570.31 5.1
14.0 2.52e+03 961.01 7.2
15.0 1.00e+03 1730.26 12.0
16.0 3.99e+02 3431.33 23.0

3 Field Rotation

The three sources of �eld rotation are: misalignment of the CCD's with respect to
the optical axis; misalignment between the axes of symmetry and rotation; and errors
in the determination of the attitude of the spacecraft. The �rst two e�ects lead to
smearing of the images in the direction perpendicular to the scan since the images do
not, in this case, travel parallel to the CCD rows. Errors in attitude determination
lead to an apparent �eld rotation, in that the spacecraft is not scanning along the
expected direction. Field rotation introduces a correction to the apparent abscissae of
� cos r, where � is the observed height of the star as it transits the CCD's, and r is the
angle between the CCD array and the scan direction. The error in the determination
of this correction is

�2

rot
= �2�2

cos r
+ cos2 r �2

�
: (7)

Note that the �rst term represents a systematic error in star abscissa, since an er-
ror in cos r causes stars above and below the �eld center to be shifted in opposite
directions by an amount proportional to the magnitude of their heights. This error
will approximately average out in the determination of the �eld center, but must be
retained in the expression for the abscissa error of the object star.

68% of the stars will transit within 0:167� of the center of the array. Thus, � will be
set to 0:167� in the �rst term to obtain the one-sigma error. The expected centroiding
error in the direction perpendicular to the scan, ��, is magnitude dependent, and is
limited to about 3.4 mas by CCD pixelation. Values of �� are given in Table 2. It can
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be shown that cos r � sin '  , where  is the angle between the symmetry and
rotation axes. This angle is expected to be a few arcminutes, so that cos r � 10�3.
The precise value of cos r can be determined empiricly by comparing the the transit
times of stars with their expected transit times when there is no �eld rotation. The
latter is re�ned by iteration, starting from input-catalog positions. It may be assumed
that the �eld rotation is a slowly-varying function of time. Thus, all stars crossing
the detector in a ten-minute interval may be used to �t a smooth function to the
observed �eld rotation. The resulting variance is :

�2

cos r
=

" X
VMAG

� �2

 2�2
�
+ �2

o
+ �2

c

#
�1

(8)

where � is the number of stars of a given magnitude transiting the detector in a ten-
minute interval. The subscripts o and c refer to observed and computed, respectively.
Upon iteration, �c ! �o. Replacing �

2 by the mean-square value, < �2 >= (0:144�)2,
setting  = 10�3, and summing over all stars seen in a ten-minute interval, one
obtains

�2 �2

cos r
=

�2

< �2 >
(7:98 �as)2 = (9:26 �as)2: (9)

This corresponds to an error in the angle r of about 2.6 mas. Thus, the contribution
of �eld rotation to the single-observation error is

(9:26 �as)2 +  2 �2

�
+  2 < �2

�
> =m (10)

where the last term represents the e�ect on the location of the average �eld cen-
ter. The angular brackets represent an average over magnitude, weighted by the
magnitude-dependent stellar density, and m is the number of stars in the EFOV.

4 Scale Errors

The scale for the FAME instrument in the along-the-scan direction is identical to
the angular velocity of the spacecraft. Apparent scale changes are introduced by a
variety of mechanisms including uctuation of the satellite's attitude, angular velocity
and temperature, and drift in the clock frequency. These scale changes are modeled
using information from the rotation-rate sensors and star tracker. Errors in the scale
determination lead directly to an error in the relative separation between the object
star and the �eld center.

4.1 Clock Stability

During a 1.8 hour period, the relative clock frequency may change by as much as
��=� = 5 � 10�11. Since j��=�j = j�t=tj, this produces a scale change due to a
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change in the \length of the second" of

��� = 

��

�
= 0:01 �as/s: (11)

Scale errors of this magnitude are negligible in comparison to those due to uncertainty
in the angular velocity.

4.2 Projection E�ects

An uncertainty in the �eld rotation of �r will introduce an apparent scale change of


(1� cos(�r)) = 1
2
(�r)2: (12)

It has already been estimated that r will be determined to about 2.6 mas, which
would result in a negligible error in scale.

4.3 Angular Velocity

The angular velocity is obtained by dividing the angle, �, separating a time-of-ight
chip and a scienti�c CCD, by the time di�erence, �t, between transits of a fringe
across the two chips. The error in a single angular velocity measurement is given by
the standard propagation-of-error formula as

�2



=
�
1

�t

�2
�2

�
+
�



�t

�2
�2

�t (13)

where, for two chips separated by one chip width, nominal values of �t = 1:76 s,
� = 0:098�, and 
 = 200"=s are assumed. Errors in the knowledge of these nominal
values are not critical since the average scale is calibrated by the closure conditions
discussed below. Of more importance is knowledge of the changes in these values with
time. �� may be expressed in terms of the uncertainty in the temperature change,
�T , and in the coe�cient of thermal expansion, �, as

�2

�
= (0:098�)2

h
�2�2

�T
+ (�T )2�2

�

i
: (14)

If � is known to 1%, then the second term is probably negligible for �T < 0:01 K.
Thus, �� � 2�as when �T is known to � 3 mK. The contribution to the error
in angular velocity due to centroiding is contained in the term ��t, which may be
obtained by multiplying the appropriate entry in Table 2 by

p
2=
.

The angular velocity may be assumed to be a slowly varying function of time in
between thruster �rings. Thus, higher accuracy may be obtained by �tting all angular
velocity measurements obtained between thruster �rings to a smooth function. The
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random errors will then be diminished by the square-root of the sum of the weights.
In the worst case, one �eld of view is pointing at the galactic pole while the other
�eld has an average density of stars. The numbers of stars seen by the time-of-ight
(TOF) chip per minute are given in Table 3 for a 1 � star density. Using these data

TABLE 3

VMAG stars/sq. deg stars/minute
avg. worst 1 � on TOF chips

6-7 0.132 0.101 0.12 0.098
7-8 0.358 0.270 0.33 0.269
8-9 0.986 0.728 0.89 0.725
9-10 2.620 1.862 2.34 1.907
10-11 7.052 4.881 6.26 5.101
11-12 17.62 11.88 15.52 12.65
12-13 45.29 29.56 39.55 32.23
13-14 107.8 67.27 93.00 75.78

and the expected centroiding error from section 2, one obtains a standard deviation
of the mean angular velocity over a ten-minute interval of

�
 = 8:30�as/s: (15)

One may assume that the error in angular velocity is constant during the time it
takes to scan through the e�ective �eld of view (EFOV). Then all the stars in the
EFOV will be displaced in the same direction relative to the object star located at the
edge of the �eld. If there are m uniformly-spaced stars in the EFOV, each transiting
a time �t from the next, then the angular velocity error contributes

m�t �

2

=
EFOV �


2

(16)

to the single-observation error.

5 Orbit Determination

The errors arising from imperfect orbit determination are discussed in this section.
Uncertainty in the spacecraft velocity represents a major source of astrometric error
for FAME. Of somewhat lesser importance is the knowledge of the satellite position,
which is relevant for astrometry of solar-system objects.
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5.1 Velocity Determination

Uncertainty in the satellite velocity leads directly to errors in the source positions
due to uncompensated aberration. The error is largest for �elds located in a direction
perpendicular to the velocity vector. In this case, letting r be the true position vector
of the source relative to the observer, and r

0 the apparent position vector,

cos �abr = r=r0 =
1p

1 + �2
(17)

where � = v=c. Expanding both sides, one �nds that �abr ' � in radian measure.
Within a given �eld of view, the apparent displacement due to velocity errors will be
the same for all stars. Thus, there is no error in relative position for stars in the same
�eld of view. There will be an apparent displacement between the stars in di�erent
�elds of view, however. For an uncertainty in the satellite velocity, �v, measured in
centimeters/second, the relative shift of one �eld relative to the average �eld center
is

�abr = 3:44 �v �as (18)

for two �elds having approximately the same density of stars.

5.2 Position Determination

The position of the satellite in its orbit must be known for accurate astrometry of
solar-system objects. Position errors perpendicular to the line of sight have the largest
e�ect. In this case, the astrometric error in an observation of a solar-system object
at a distance D, arising from a satellite position uncertainty �r, is �r = �r=D in
radian measure. Thus, for an object at the distance of Mars at opposition (D =
7:8 � 107 km), an uncertainty in satellite position of 100 meters will introduce a
maximum astrometric error of 264 �as. For an object in the outer solar system, say
at 109 km, the same position uncertainty leads to an astrometric error of 21 �as.
Solar-system objects are not part of the principle scienti�c objectives of FAME, so
this source of error is ignored in the following.

6 Metrology System

The metrology system measures changes in the angle between each mirror in the
collimating mirror assembly (CMA), and the optical axis to an accuracy of �met =
34 �as. Two such measurements are needed to determine the change in basic angle,
, so that the uncertainty in  is � =

p
2�met. By an argument similar to the one

employed in the analysis of aberration errors, only one half of this error contributes

8



to the uncertainty in the position of a star relative to the average �eld center. Thus,
the contribution to the single-observation error due to uncertainties in the basic angle
is

�=2 = �met=
p
2 = 24:04 �as: (19)

7 Great-Circle Reduction

This stage of the data reduction involves applying closure conditions to the abscissa
values, obtained from the fringe-�tting stage, so that errors arising from uncompen-
sated scale changes do not accumulate when the abscissa of a star is referred to an
origin many degrees away. The e�ectiveness of the great-circle reduction in removing
scale uctuations is parameterized by the non-rigidity factor, V , de�ned by

�2
a
= 1

2V �2
x
; (20)

where �a is the abscissa error referred to a common origin, and �2
x
is the variance of

the relative distance between the object star and an average �eld center. The factor
of 1

2 arises from the fact that each star is observed twice, once in each �eld of view,
per great-circle scan.

In order to apply the non-rigidity formalism to the FAME observations, one must
de�ne an e�ective instantaneous �eld of view (EFOV), which is needed in the calcu-
lation of both V and �x.

7.1 E�ective Field of View

For an EFOV containingm uniformly-spaced stars, each transiting a time �t = 0:117 s
from the next, the error in the relative separation between the average �eld center
and an object star at the edge of the �eld is

�2x =
< �2

cent
> + < �2

�
> cos2 r

m
+

"
m�t �


2

#2
+
�2



4
+�2

abr
+�2

cent
+�2�2

cos r
+cos2 r �2

�
; (21)

where the angular brackets indicate an average over magnitude, weighted by the
magnitude-dependent stellar density. Values of magnitude-independent errors are
collected in Table 4. To �nd the EFOV, the derivative of �2

x
with respect to m is set

equal to zero. Solving for m, one obtains

m =

"
2(< �2

cent
> + < �2

�
> cos2 r)

(�t �
)2

# 1
3

: (22)
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The EFOV is obtained from m by multiplying by �t
. The result is m = 92, which
corresponds to an EFOV=0:60�. A re�nement of this procedure is to take into account
them dependence of the non-rigidity factor, V , which is computed in the next section.
This will result in an EFOV which is optimized for the magnitude of the object star.

TABLE 4

Source of Error Expression Value
avg. �eld center

q
(< �2

cent
> + 2 < �2

�
>)=m 64.30 �as

rotation rate 1
2 EFOV �
=
 44.83 �as

basic angle �=2 = �met=
p
2 24.04 �as

pixelation | 13.43 �as

�eld rotation
q
�2�2

cos r
+ cos2 r �2

�
9.26 �as

aberration �abr = 3:45 �v 6.88 �as

clock resolution 
=(
p
12 �) 5.77 �as

7.2 Non-Rigidity Factor

The equations for computing V are derived from a harmonic decomposition of scale
changes around a great-circle scan. This has been done in the appendix of H�yer, et
al. (1981):

V =
4m

n

n=2X
`=1

1

K`

(23)

with

K` = 2(m� 1)� 4
m�1X

kodd=1

m� k

m
cos

 
�k`

n

!
cos(`)

� 4
m�1X

keven=2

m� k

m
cos

 
�k`

n

!
; (24)

where m is the number of stars per EFOV, n = 27; 600 is the number of stars in a
great-circle scan, and  is the basic angle. The non-rigidity is about 7 for m = 2, and
approaches unity for large m.

The product of V and �x as a function of m goes through a minimum, the location
of which depends on the magnitude of the object star. The results are summarized in
Table 5. One can understand why the EFOV should be larger for fainter object stars,
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since in this case, the errors due to uncertainty in the angular velocity remain small
in comparison with the centroiding error of the object star until the time di�erence
becomes relatively large.

TABLE 5

VMAG V EFOV �a (�as) �� (�as)
6.0 1.11 0:63� 64.7 20.9
7.0 1.11 0:65� 65.9 21.3
8.0 1.11 0:66� 70.5 22.9
9.0 1.11 0:67� 80.9 26.1
10.0 1.11 0:68� 102.5 33.1
11.0 1.10 0:70� 143.3 46.3
12.0 1.10 0:71� 214.8 69.5
13.0 1.10 0:72� 336.9 108.9
14.0 1.10 0:74� 549.8 177.8
15.0 1.10 0:75� 948.8 306.9
16.0 1.10 0:76� 1784.5 577.1

7.3 Thruster Firings

When the gas thrusters are �red to bring about an attitude correction, both the
attitude and the angular velocity undergo rapid change in a period of about 20 ms.
Since the average time interval between star transits is greater than 100 ms, su�cient
data is not available to monitor the changes in attitude and angular velocity during
the course of a thruster �ring. It is anticipated that corrections to the rotation rate
will be made only when the spacecraft is \precessed" to begin a new great-circle scan.
Thus, thrusters will only be �red only in order to make corrections to the pitch and
yaw during the course of a great circle scan. It is estimated that these impulses will
change the angular velocity by about 1 mas/s due to misalignment of the thruster
clusters with respect to the axis of symmetry of the spacecraft. The average angular
acceleration is therefore (1mas s�1)=(20ms) = 50mas=s2, applied over 20 ms. This
leads to an angular displacement of about 10 �as. The precise value depends upon
the exact misalignment of the thrusters, and on the actual time dependence of the
acceleration. Nevertheless, 10 �as may be taken to be the typical abscissa error arising
from thruster �rings. This will increase slightly the single-observation error of the
fewer than 2% of the stars which happen to fall close to a thruster �ring.
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Occasionally, a larger angular velocity impulse may occur, for example in the event
of a (rare) angular velocity correction during the course of a great-circle scan, In this
case, it is possible to tie together segments of a great-circle scan that are on opposite
sides of the perturbation using information from an adjacent scan. This will work
provided that a perturbation does not occur at the same point on both scans. This
will result in higher single-observation errors for a small number of stars, but would
have a negligible e�ect on the average abscissa error for the whole scan.

7.4 Condition Number

The astrometric accuracy will also depend upon the condition number of the normal-
equations matrix (Makarov, H�g, and Lindegren, 1994). A large condition number
means that periodic errors having a period near the basic angle are ampli�ed. This
a�ect would be minimized if two basic angles were used. The impact of this error
source on FAME is yet to be determined.

8 Sphere Reconstruction

It takes about 235 great-circle scans to cover the entire celestial sphere. Since each
scan is completed in 1.8 hours, each star can be scanned an average of 52 times in
a 2.5 year mission. It is estimated that 68% of the stars will be scanned 38 or more
times. H�yer et al. (1981) derived the relationship between the single-observation
error, and the error in parallax, ��, resulting from N great-circle scans of each star :

�2

�
=

�2

a

N 1
2 sin2 �

(25)

where � = 45� is the angle between the axis of rotation, and the sun vector. The
results are tabulated in the last column of Table 5.
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